If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h^2+18h+72=0
a = 1; b = 18; c = +72;
Δ = b2-4ac
Δ = 182-4·1·72
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-6}{2*1}=\frac{-24}{2} =-12 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+6}{2*1}=\frac{-12}{2} =-6 $
| x+3/16=9/8+x-4/2 | | -3y=-9-2(3) | | 21x+4+2x=39 | | b^2+35=175 | | 8n+6=166 | | 3x-4x+3=6 | | 12=r/7+10 | | 23=-7x+5(x+3) | | 4x+3-2x=7-x+5 | | x2+3x/2=35 | | 3x+21=2x+43 | | 27=19+x | | -7y-10=11 | | 5x-2(3x+1)=3(x-5)-3 | | G(x)=4=1 | | -3y=-9-(0) | | 3(6*5)=5x | | 6-(7x+4)-12x=4x+17 | | 3x2+1=7x2-1 | | F(x)=x2+3x+1 | | 32d-6+2=2 | | -15.1=x/6+4.1 | | 4-2x/6=5 | | -6(4x-2)=12 | | 65=-5v+14v+2 | | 1-7x=-4(1+3x)+3 | | -1+4v=35 | | 8p-9=-2p+6 | | F(x)=x2+4x+2 | | 7(3x-5)=-203 | | w+7/5=10 | | 217=105-u |